Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies.
نویسندگان
چکیده
We demonstrate the use of a hybrid fluorescent protein semiconductor quantum dot (QD) sensor capable of specifically monitoring caspase 3 proteolytic activity. mCherry monomeric red fluorescent protein engineered to express an N-terminal caspase 3 cleavage site was ratiometrically self-assembled to the surface of QDs using metal-affinity coordination. The proximity of the fluorescent protein to the QD allows it to function as an efficient fluorescence resonance energy transfer acceptor. Addition of caspase 3 enzyme to the QD-mCherry conjugates specifically cleaved the engineered mCherry linker sequence, altering the energy transfer with the QD and allowing quantitative monitoring of proteolytic activity. Inherent advantages of this sensing approach include bacterial expression of the protease substrate in a fluorescently appended form, facile self-assembly to QDs, and the ability to recombinantly modify the substrate to target other proteases of interest.
منابع مشابه
Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels.
A novel electrochemical sensing platform for sensitive determination of caspase 3 activity and inhibition was developed by combining the site-specific recognition and cleavage of the DEVD-peptide with quantum dots as signal amplification.
متن کاملModulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly
Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET)-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD) donor -mCherry ac...
متن کاملSelf-assembled nanoscale biosensors based on quantum dot FRET donors.
The potential of luminescent semiconductor quantum dots (QDs) to enable development of hybrid inorganic-bioreceptor sensing materials has remained largely unrealized. We report the design, formation and testing of QD-protein assemblies that function as chemical sensors. In these assemblies, multiple copies of Escherichia coli maltose-binding protein (MBP) coordinate to each QD by a C-terminal o...
متن کاملCellular Imaging at the Nanoscale: Poster Abstract Booklet
#1: Wavelength and pH Dependent Detection of Homocysteine #2: Synthesis and Characterization of Photoswitchable Fluorophores for Multispectral Super Resolution Microscopy #3: Ligand Deployment and Sensing in a Large, 3‐D Extracellular Space #4: Multi‐photon Excitation and Characterization of Novel Fluorophores for Cellular Imaging #5: New Fluorescent Probes for Visualizing Autophagy #6: Fr...
متن کاملCarbon quantum dot-functionalized aerogels for NO2 gas sensing.
Silica aerogels functionalized with strongly fluorescent carbon quantum dots were first prepared and used for simple, sensitive, and selective sensing of NO2 gas. In the presence of ethanol, homemade silica aerogels with a large specific surface area of 801.17 m(2)/g were functionalized with branched polyethylenimine-capped quantum dots (BPEI-CQDs) with fluorescence quantum yield higher than 40...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 11 شماره
صفحات -
تاریخ انتشار 2009